bike75.gif (2872 bytes)

CYCLING PERFORMANCE TIPS

  Last updated: 3/3/2014

EXERCISE INDUCED MUSCLE PAIN, SORENESS, AND CRAMPS


There are 3 forms of muscle activity - each with a different risk for the development of muscle pain. They are: In concentric contractions, the length of a muscle is shortened as it overcomes resistance. This is the type of contraction that occurs as you use your bicep to do a dumbbell curl and can also be thought of as the muscle actively shortening. In eccentric contractions, the muscle works actively (actively lengthens) to slow the lengthening of a muscle against a force . This is the work done by the bicep as it lowers the dumbbell to the starting position of the curl exercise. And finally, in an isometric contraction, the length of the muscle remains the same as it pushes against an immobile object. Cycling requires concentric work of the leg muscles - although there is some eccentric work being done as the knee is stabilized by other muscle groups..

For those interested in increasing muscle strength, eccentric contractions are more effective as you can apply more force to the muscle fibers (the muscle then strengthens in response as it adapts to this increased load) in an eccentric contraction than in the concentric phase of a muscles. In the dumbbell example, this means that you can lower a heavier weight than you can initially curl. However, research indicates that when the intensity of training was comparable (dumbbell weight is kept constant)in eccentric and concentric contractions, the gains in muscle strength was not significantly different. In other words, the increase in strength seen with eccentric training was only superior to concentric training when the intensity (weight used) was higher during eccentric training.

When it comes to the development of muscle pain, the result of micro trauma (small tears in the tissue) to the muscle fibers from the stress of the activity, eccentric contractions are more likely to be the culprit. In addition to the fact that you can develop more force in the muscle with an eccentric contraction, the lengthened muscle fiber has fewer engaged cross striations and thus appears to be more exposed to potential tissue tears.

There are three patterns of "exercise associated" muscle pain.

MUSCLE PAIN DURING EXERCISE

Exercise requiring significant effort, either high energy demands (low resistance, rapid contraction rate) or substantial muscle effort (high resistance, low contraction rate) is often associated with muscle pain or discomfort. No studies have identified a specific cause for this discomfort, although the fact that it occurs more quickly in a muscle with a limited blood supply suggests that the culprit is a byproduct of muscle metabolism. As the ingestion of sodium bicarbonate will delay the onset of the pain, it is thought that the metabolite is acidic in character.

Lactic acid is usually blamed for the discomfort. But recent information suggests that the muscle cell metabolizes lactic acid quickly, and in fact it may be a better fuel to power the muscle than glucose. Thus it is more likely that other acidic metabolites such as pyruvic acid and ammonia are involved. The pain in the actively contracting muscle is almost certainly multifactorial, related to a combination of acidic intermediate metabolites, ionic shifts at the cell membrane level (K, magnesium), and actual changes in the muscle cell proteins themselves. As training increases the level of activity at which discomfort occurs, we know that the muscle cell can adapt to these factors.

It is interesting to note that the body has developed a mechanism to deal with this discomfort. Endorphins, opiate like substances produced internally, are secreted into the central nervous system during endurance exercise and alter the perception of pain during prolonged high intensity exercise. Thus we have a mechanism to warn of muscle overuse (pain) as well as an intrinsic process to help us deal with that pain if we opt to continue.

DELAYED ONSET MUSCLE SORENESS (DOMS)

Delayed soreness (or stiffness) begins 24 to 48 hours after exercise and peaks at 48 to 72 hours. It is most evident after "eccentric" muscle activity (actively resisting lengthening of the muscle such as occurs in raising or lowering a weight) which indicates it is due to high tension on muscle fibers and connective tissues and is less common in isometric or static tension activity. The soreness is accompanied by a decrease in muscle strength, a reduced range of motion, and leakage of muscle cell proteins (creatine kinase, myoglobin) into the blood where these enzyme and protein levels can be measured. These three findings indicate that actual muscle damage is the culprit (most likely minute tears) rather than a buildup of metabolic byproducts during exercise. Muscle biopsies confirm that it indeed associated with muscle fiber damage with an inflammatory response.

DOMS is most common at the beginning of the training season when athletes are increasing their training after a period of reduced activity, or as a result of exercise greater than normal. It does not appear that soreness from previous exercise increases the chance of further muscle damage. In fact the adaptive process of healing, even from microscopic injury with minimal pain, appears to have a protective effect against the development of additional muscle damage and soreness from subsequent exercise. Theoretically small doses of damage over time will provide cumulative protection - thus the rationale for a gradually progressive exercise training program.

In 1997, a small group of elite athletes with a combination of chronic fatigue and delayed onset muscle soreness were studied. Muscle biopsies were abnormal and the authors speculated that cumulative, low level, chronic injury might interfere with performance. Whether chronic injury is involved in the symptoms we call overtraining is still considered speculative. But it does lend support to the idea that adequate rest in a training program is as important as the actual physical training itself.

Some interesting facts about DOMS:


To summarize the science, if you don't want to put up with the DOMS or pain after exercise:
  1. warm up before you push it
  2. get a good training base and ramp up slowly
  3. if it hurts, listen to your body and take a few days off - or exercise a different set of muscles at the gym

To muddy the waters further, we can now add a number of studies that indicate that ibuprofen "for prevention" is more than ineffective, it may actually be harmful. The first article, in the New York Times in 2009, references a study of Western States 100 runners. To quote: "Those runners who'd popped over-the-counter ibuprofen pills before and during the race displayed significantly more inflammation and other markers of high immune system response afterward than the runners who hadn't taken anti-inflammatories....and ....We had researchers at water stops” during the Western States event, Nieman says, asking the racers how the hours of exertion felt to them. There was no difference between the runners using ibuprofen and those who weren't. So the painkillers were not useful for reducing pain during the long race and afterward, the runners using ibuprofen reported having legs that were just as sore as those who hadn't used the drugs."

A more recent NYT article in 2012, references a more recent study where "the men briskly rode stationary bicycles for that same hour. Before one of those rides, though, they again took 400 milligrams of ibuprofen the night before and the morning of their workouts. At the end of each rest or ride, researchers drew blood to check whether the men's small intestines were leaking. Dr. van Wijck found that blood levels of a protein indicating intestinal leakage were, in fact, much higher when the men combined bike riding with ibuprofen than during the other experimental conditions when they rode or took ibuprofen alone."

Even though more than 50% of elite athletes report taking ibuprofen (vitamin I) before or during an event or race, an editorial in the British Journal of Sports Medicine nicely summarizes the current thinking. "There is no indication or rationale for the current prophylactic use of NSAIDs by athletes, and such ritual use represents misuse."


ELEVATED CREATINE PHOSPHOKINASE AFTER EXERCISE

A reader recently mentioned that he had a physical after a bout of fairly vigorous riding and his creatine phosphokinase (CPK) was elevated. He rides hard and often has tender muscles the next day. Initially his physician wondered if he had a chronic inflammatory condition (myositis) but with 3 days of rest the CPK returned to the normal range.

With a little research I was able to find several articles that described this response to exercise. The first one I tracked down suggested an average 10 fold increase in the serum CPK levels, with quite a bit of individual variation. To quote "Muscle soreness in the eccentrically exercised thigh increased from 0 (range, 0-0), to 1.3 (range, 0.8-2.1) and 1.9 (range, 0.8-2.5) arbitrary units (a.u.) on day 1 and 2, respectively (P < 0.05). Creatine kinase increased from 54 U (range, 32-86 U) before the eccentric exercise to 620 U (range, 117- 1571) on day 1 and 2211 (range, 87-8138 U) on day 2."

The more definitive article notes, and I'll quote directly

This same article also notes that "serum enzyme activities increase very little even after prolonged participation in those non-weight-bearing activities such as swimming and cycling which do not include eccentric muscular contractions." Interestingly the reader who asked the original question does a lot ofout of the saddle riding, so I suspect that aspect of his riding along with being at the upper end of the range of responders to exercise explained his laboratory findings.


MUSCLE CRAMPS (CRAMPING)

It's not unusual to hear the following story:

"I entered my first mountain bike race (18 miles) and at mile 14, my thighs and right calf cramped up. This has happened before on long rides. I thought I trained enough, hydrated enough, and ate enough bananas, but I still cramped up and had to go real slow for the last 4 miles. It was sooooo frustrating. I have another race coming up next month but its only 12 miles but has steeper hills. What should I do? Do tights help reduce cramps? When I get them (cramps) should I massage the cramped area? Should I train the amount of miles of the race?"

A cramp is an intense, active contraction of the muscle. Cramps are much more common when you use your muscles beyond their accustomed limit either for a longer than normal duration or at a higher than normal level of activity. This explains why cramps are more common at the end of a long or particularly strenuous ride or after a particularly vigorous sprint. Cramps are among the most frequent complaint in marathon participants (18% in one study). In another study of cyclists competing in a 100 mile race, 70% of male participants experienced cramps (women, interestingly, had a rate less than half as frequent at 30%). Cramps can occur during activity, in the hours afterwards, or the night after a particularly long ride or competitive event. They become more common with age and also are reported to occur as a side effect of certain drugs (i.e., lipid-lowering agents, anti-hypertensives, beta-agonists, insulin, oral contraceptives, and alcohol).

Although cramps may occasionally be exacerbated by a fluid and electrolyte (sodium) imbalance from sweating, that is not universally the case as individuals involved in activities requiring chronic use of a muscle without sweating (musicians for example) will also experience cramps. In one study of marathon runners, there were no differences in sodium or hydration levels between the 15 participants who developed cramps and the 67 who didn't. This was confirmed in another study in ultra-distance runners. And although a low magnesium level can cause severe muscle cramping, another study of magnesium supplements in triathletes failed to show any benefits in preventing cramping.

As is often the case when there is no consensus on etiology, you will find many conflicting opinions on treatment options. A review of the literature indicates that muscle cramps with exercise cramps are more likely due to an altered spinal cord reflex loop from/to the muscle as a result of muscle fatigue.

The following are some options that you might consider if you are suffering from frequent muscle cramps while cycling. Even though dehydration, for example, is not a proven etiology in studies of groups of athletes, in any single individual it may be a contributing factor. And maintaining good hydration will never be a negative for your performance.

What's the answer? Everyone's physiology is different, and as the reason for muscle cramps is most certainly multifactorial, the solution to cramp prevention almost certainly varies from person to person. Maintaining adequate fluid replacement and nutrition during training is essential for optimal physical performance above and beyond any benefits in preventing muscle cramps. From there it is a trial and error approach to see what might help you. If you suffer from muscle cramps, try manipulating supplements - potassium, magnesium, calcium (using one of the commercial brands) - and even trying some of the commercial products touted as cramp preventers. But for the vast majority who only rarely suffer from cramps it will be training, fluids and carbs that are the key. And for this group, supplements are just an added expense without any clear benefit.

If cramps do occur, gently stretching the affected muscle will give relief, and preventive stretching can prevent cramps. Calf cramps while riding can be relieved by standing on the bike and dropping your heel, while anterior thigh cramps can be stretched out by unclipping and moving your thigh backwards towards your buttocks. Although a number of medications have been suggested as treatments for muscle cramps (vitamin E, verapamil, and nifedipine to name a few) only quinine has been shown to be effective in scientifically controlled studies. But its high incidence of side effects limits its usefulness as a routine treatment. So what would I recommend for those suffering from frequent muscle cramps?

Pushing beyond your training is a sure fire way to get them. Remember to " train to the ride"and push yourself to the exertion level of your competitive ride once a week.

The first 2 readers' questions below highlight the role training can play in the prevention of cramps - even though it relates to the question of cramps in a non cycling event. (The answer was provided by an associate at my clinic.)

Q: I started cycling about 6 months ago and trained really hard this summer for a double century. In all the training and the race itself I rarely suffer from any muscle spasms. However since I started cycling I (may just be coincidence) get EXTREME spasms when I hike down hill. Hiking uphill doesn't bother me, but my quads and calves literally freeze up after only 5-10 minutes of down hill hiking. It becomes so painful I can barely bend my leg. Last time I only hiked 1/2 mile and I thought they were going to have to carry me out. I've tried stretching before and it doesn't help. Within hours the spasms are nearly gone and by morning I feel fine. This probably sounds crazy, but I can't figure out how I can bike 200 miles and can't hike 1/2 mile.

A: Here's the somewhat technical answer: The ankle plantar flexors and quads act concentrically in cycling - that is they generate tension (fire) while shortening. Through the down stroke the ankle plantar flexes and the knee extends under the influence of the gastrocs, soleus and quads. At the bottom of the stroke and through the up stroke, the hamstrings are shortening too.

In walking down hill the opposite is true. Your friend is repeatedly letting himself down hill under the eccentric firing of the quads, plantar flexors and hamstrings. To keep from falling forward the hamstrings fire to keep the pelvis from rotating forwards. During stance phase the ankle dorsiflexes over the planted foot lengthening the plantar flexors and the knee flexes lengthening the quadriceps muscles. A pack will change the equation in that it will greatly amplify the intramuscular tension and therefore the work performed by the muscle. Work that these muscles are not trained (training meaning the physiologic and anatomic adaptations to repeated work) to do.

And the short version: In terms of improving the situation the answer is really cross training - his muscles are well equipped for steady state aerobic concentric work at 90 to 110 rpm but not the greater intensity, near anaerobic threshold eccentric work of hiking down hill. I would bet that eight weeks of running including 20% speed/interval work will turn the problem around.


Q: I am 42 years old and I have been cycling for 19 years. I have one real problem that I can't seem to shake. CRAMPING. I have trained longer, harder, faster, further and taken every conceivable >concoction used, special supplements and the thing I have found that works the best although it does not work 100% is drinking Indian tonic water for the week leading up to the race. Am I right in saying that I am just one of those people prone to cramping or can I really do something about it. I must add that I have developed a strange ability to endure these cramps and ride through them only for them to reappear and literally bite me so hard I have nearly fallen off my bike. Kind regards. James.

A: Muscle cramps are probably multifactorial in origin - exercise beyond your limits (distance ridden or maximum levels of exertion), dehydration, electrolyte imbalance, etc. And age is a factor as well. I never cramped until I got into my 40s, and leg cramps are a common complaint of older patients of mine. Once you have corrected all the variables which you can control (except age of course) it then becomes a matter of learning your triggers and riding within your limits (usually defined by trial and error) and understanding that these triggers may vary depending on how well you are trained at the time.


Q: I recently got back on my bike about 6 months ago about the same time I started a low calorie diet. Thus, far I've lost about 55 lbs or about 2 lbs per week. I eat a lot of protein (fish, steak, fruits, etc.) except for lunch (salads mostly) and not too much carbs. I consume about 1800 calories per day and burn about 800 per day exercising that mostly consist of bike riding and when the weather does not permit the ride, I'll hop on the (moderate walking) treadmill for about 30-35 min each time. On the weekends, I'll ride 20 miles (AM) and another 10 miles (PM) sometimes. This was my regular routine for about 5 months. I am usually riding about the same distance (except for the weekends) and intensity. The past month after a 40 mile ride, I noticed that I am experiencing muscle fatigue and soreness on my entire leg. My legs feel like jelly. The soreness comes almost immediately after the ride after a short rest on the couch. I also notice that I use to ride on the highest gear and now that's getting too difficult for me and I now have to reduce to lower gears. It just seems that after 6 months of riding my leg muscles should improve, so why am I experiencing muscle fatigue and soreness? - EL

A: A few thoughts on your question.



Questions on content or suggestions to improve this page are appreciated.

Cycling Performance Tips
Home | Table of Contents | Local Services/Information